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Abstract
Simple jerk systems are very useful for combining analytical computations and
dynamical analysis in phase space. This is particularly relevant since there
is still no direct link between the algebraic structure of ordinary differential
equations and the topology of the chaotic attractors which they generate.
In this paper, particular analytical solutions are identified for three simple
chaotic flows. It is shown that these solutions have varying effects on the
bifurcation diagrams. Moreover, a feedback circuit analysis is used to exhibit
the similarities between the three simple systems. Such analysis also exhibits
the relevant role of double nullcline in the topology of the attractor.

PACS number: 05.45.+b

1. Introduction

In investigating the restricted three-body problem, Poincaré showed that no general analytical
solution can be found [1]. In addition, he showed that the behaviour is very sensitive to
initial conditions. In a modern language, the Poincaré–Bendixson theorem [2] requires that
autonomous first-order ordinary differential equations with continuous functions have to be
at least three dimensional to have bounded chaotic solutions. During his search for a simple
system displaying both sensitivity to initial conditions as well as long-term instability, Lorenz
discovered a set of three ordinary differential equations derived from the hydrodynamical
equations describing a Rayleigh–Bénard convection [3]. Rössler later simplified the Lorenz
equations by removing the symmetry of the system. He obtained a simple chaotic band
attractor [4] generated by a set of three ordinary differential equations which are algebraically
simpler than the Lorenz equations. The equations are constituted by seven terms with a single
quadratic nonlinearity unlike the two observed in the Lorenz system. In 1979, Rössler [5]
found a toroidal chaotic system with six terms and one quadratic nonlinearity.
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An extensive computer search by Sprott revealed 14 additional chaotic systems including
six terms and one quadratic nonlinearity, as well as five systems with five terms and two
quadratic nonlinearities [6]. Gottlieb [7] then noted that some of the equations for the new
found systems could be rewritten as a single third-order differential equation. Prior to Gottlieb,
it was shown by Gouesbet and Letellier while investigating global modelling techniques [8]
that the Lorenz and the Rössler systems can be rewritten in such a form but with rational
functions. Note the exception of the Rössler system when it is rewritten in such a form from
the y-variable: in this case, the function is a polynomial. This was also done later by Linz
[9]. Fu and Heidel [10] showed that quadratic functions with fewer than three terms cannot be
chaotic. More recently, Malasoma proposed the simplest chaotic jerk equations which have
symmetry properties [11].

A search for such simple equations generating chaotic behaviour is very useful for
developing analytical manipulations and, consequently, to propose a link between the algebraic
structure of the ordinary differential equations and the type of chaotic behaviour they induce.
In this paper, three simple chaotic systems which may be written under the form of a jerk
system will be investigated. It will be shown that particular solutions with an explicit algebraic
form may be found. These solutions have a preponderant role in limiting the control parameter
range over which a chaotic attractor may be observed. In addition, a feedback circuit analysis
introduced by Thomas [12] will be proposed to exhibit the roots of the equivalence between
these three systems. The subsequent part of this paper is organized as follows. Section 2 will
describe briefly the principle of the feedback circuit analysis. In section 3, three simple jerk
systems will be investigated and section 4 gives a conclusion.

2. Feedback circuit analysis

The ideas of feedback circuits were developed in the context described by Boolean logic, or
dynamical systems with linear step-function dynamics (or sigmoidal functions with high Hill
number) [13, 14]. More recently, such an analysis was extended to more general dynamical
systems [14, 15]. It provides a first link between the algebraic structure of the ordinary
differential equations and their asymptotic behaviour. This results from the fact that feedback
circuits can be associated with fixed points which structure the phase portrait [16]. Thus,
feedback circuits can serve as a qualitative guide to interpret differential equations although
they give no information on the bifurcation diagram.

For the dynamical system

ẋi = fi(x1, x2, x3) (i = 1, 2, 3) (1)

described in a three-dimensional phase space for the sake of simplicity, there are some
interactions between the dynamical variables xi which can be defined using the elements
of the Jacobian matrix. Variable xj acts on variable xi if the term Jij of the Jacobian matrix
is non-zero. This action is positive or negative depending on the sign of element Jij . A full
circuit is defined as a sequence of non-zero elements in the Jacobian matrix corresponding to
one of the products appearing in the analytic expression of the determinant of the Jacobian
matrix. For a three-dimensional system,

Det(J ) = J11J22J33 − J11J23J32 − J22J31J13 − J33J12J21 + J12J23J31 + J13J32J21 (2)

up to six full circuits may be identified. A feedback circuit is positive or negative depending
on the parity of negative elements, Jij , in these products. Partial feedback circuits which do
not involve all dynamical variables are also of interest. Thus, for three-dimensional systems,
a partial circuit is defined by a two-element product JijJji (i �= j) or by a single element Jkk .



Analytical results and feedback circuit analysis for simple chaotic flows 11231

The six full circuits identified for three-dimensional systems can be classified in two
groups. The first group is decomposable while the second is not.

• Decomposable. The full circuit is the union of partial circuits. It may be either the union
of one two-element circuit JijJji (i �= j) and one ‘single-element circuit’ Jkk (k �= i and
k �= j ), or the union of three ‘one-element circuits’.

• Indecomposable. The full circuit cannot be decomposed into the union of partial circuits.

For a three-dimensional system, we therefore have four decomposable circuits
(J11J22J33, J11J23J32, J22J31J13 and J33J12J21) and two indecomposable circuits (J12J23J31

and J13J32J21).
It has been shown in the context of logical description [17] that feedback circuits can be

functional or not depending whether they are responsible for the existence of a fixed point.
Indeed, each full circuit, when isolated, can generate one or more fixed points. To generate
a given fixed point, the eigenvalues of the Jacobian matrix only retaining the elements of
the isolated full circuits must be of the same nature as those of the given fixed point for the
whole system. To be explicit, the two indecomposable full circuits, J12J23J31 and J13J32J21,
are associated with eigenvalues λk = 3

√
J12J23J31 and λk = 3

√
J13J32J21, respectively. They

can therefore generate only saddle-focii, of type SF+ (one positive real eigenvalue and a
pair of complex conjugate eigenvalues with negative real parts) when JijJjkJki > 0, or
SF− (one negative real eigenvalue and two complex conjugate eigenvalues with positive real
parts) when JijJjkJki < 0. The three decomposable full circuits JijJjiJkk have eigenvalues
computed using elements Jij , Jji and Jkk completed by the diagonal elements Jii and Jjj .
These eigenvalues are

λ1,2 = (Jii + Jjj ) ± √
(Jii − Jjj )2 + 4Jij Jji

2
. (3)

In the case above, the associated fixed point can be a node, a node-focus, a saddle-focus (SF+

or SF−) or a saddle. In the case of circuit JiiJjj Jkk , the eigenvalues are the diagonal elements
themselves. All these elements are real and the associated fixed point is a node or a saddle
point.

When the system is linear, all the elements of the Jacobian matrix are constant and,
consequently, a single fixed point can be generated by each full circuit. In the nonlinear cases,
phase space can be partitioned into different domains in which the circuits have the same types
of eigenvalues. In such a domain, there is a fixed point with eigenvalues of the same type as
those of the circuit under consideration. This circuit is functional and is responsible for the
existence of this fixed point.

When partial circuits are considered, they are no longer associated with fixed points
defined by setting ẋi = 0 for i = 1, 2, 3, but with points defined by setting ẋi = 0 for only one
or two variables. In this work, we will only consider the case of partial circuits JijJji , which
may be associated with a set of points defined by ẋi = 0 and ẋj = 0. There is a curve here
called a double nullcline nullxi

∩ nullxj
, which may independently structure the phase portrait.

To end the introduction on feedback circuits, let us mention that the properties of negative
and positive circuits are very different, as illustrated by the three conjectures proposed by
Thomas [15]:

Conjecture 1. The presence of a positive circuit in a given dynamical system is a necessary
condition for multistationarity, that is, for the coexistence of two or more attractors in phase
space.
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Conjecture 2. The existence of a negative circuit (of two or more elements) is a necessary
condition for oscillations (damped or sustained).

Conjecture 3. To generate chaotic behaviour, a system must have at least one positive and
one negative circuit.

3. Three simple chaotic systems

3.1. A first simple system

Sprott [19] recently proposed the simplest algebraic example of a dissipative jerk system. It
consists of three terms including one quadratic nonlinearity. It reads

...
x= −aẍ + ẋ2 − x. (4)

This system can be rewritten as a set of three ordinary differential equations


ẋ = y

ẏ = z

ż = −x + y2 − az

(5)

where y = ẋ and z = ẍ. System (5) has a single fixed point F0 located at the origin of the
phase space. This is a saddle-focus SF−. The Jacobian matrix is

Jij =

 · 1 ·

· · 1
−1 2y −a


 . (6)

This Jacobian matrix has a particular structure since only elements J12, J23, J31 (i = 1, 2, 3)

are non-zero. Consequently, only the product J12J23J31 is non-zero. There is thus a single
full circuit which is indecomposable. This will be the case for the three systems investigated
here. The full-circuit product J12J23J31 = −1 is constant and therefore is a non-ambiguous
negative circuit. It can easily be checked that this full circuit is associated with the fixed point.
It is therefore functional and relevant to the topology of the phase portrait.

In addition, the system has an ambiguous two-element circuit characterized by the product
J23J32 = 2y. This circuit is associated with the eigenvalues :

λ = −a ±
√

a2 + 8y

2
. (7)

The double nullcline nully ∩ nullz defined by x = y2 is made up of foci when y < − a2

8 and of
saddle otherwise. As developed in [16] this double nullcline is responsible for the local and
global torsions identified in the attractor solution of system (5). The origin of these torsions
will be detailed in the topological analysis described below. According to conjecture 3,
co-existence between a positive circuit and a negative circuit is needed in order to generate
chaotic behaviour. In this case, the negative circuit is required to have oscillations while
co-existing with positive circuit J23J32 with y > 0. Nevertheless, the co-existence of two or
more attractors has not been observed in this system.

When a = 2.017 05, a chaotic attractor (figure 1) is obtained. This attractor is investigated
using the Poincaré section

P1 = {(xn, zn) ∈ R
2 | yn = 0, ẏn < 0}. (8)

A bifurcation diagram (figure 2) is computed of xn versus a within the interval ranging from
[2.017 05; 2.13]. Before the accumulation point occurring at a = 2.0577, the behaviour



Analytical results and feedback circuit analysis for simple chaotic flows 11233

0 2 4 6 8
x

-3

-2

-1

0

1

2

y

Particular solution
double nullcline 

Figure 1. Chaotic attractor generated by system (5) just before the boundary crisis. The particular
solution is drawn with a dashed line and the double nullcline nully ∩ nullz with a dotted line
(a = 2.017 05).
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Figure 2. Bifurcation diagrams versus a for the simple jerk system (5).

becomes chaotic. Such a feature persists up to a boundary crisis when a is decreased. This
crisis corresponds to the collision between the attractor and a particular solution of system (5)
given by

xP = t2

4
− a

2
(9)

where t is the time. This particular solution may be rewritten in the form

xP = y2 − a

2
(10)

Indeed, it can easily be checked in equation (4) that xP is a particular solution. This analytical
solution is shown in figure 1. Note that this particular solution has the same shape as the
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Figure 3. First-return map of the simple jerk system just before the boundary crisis (a = 2.017 05).
The increasing branch touches the bisecting line. This is a signature of a complete symbolic
dynamics.

double nullcline nully ∩ nullz, but shifted by − a
2 . In fact, the crisis appears when the attractor

is characterized by a unimodal map for which the symbolic dynamics is complete, that is all
periodic orbits which may be encoded using two symbols are embedded within the attractor
[18]. Such a feature may be identified by computing the first-return map to the Poincaré section
P1 (figure 3). Within this interval for the a values, the bifurcation diagram can be predicted
from the unimodal order [20]. The boundary crisis occurs for a ≈ 2.017 05. The behaviour
is hereafter ejected to infinity. In fact, for slightly lower values of a, metastable chaotic
behaviour is observed, that is the trajectory remains for a limited time in the neighbourhood
of the unstable periodic orbits. After the metastable chaotic regime, the trajectory reaches the
analytical solution (10) and is ejected to infinity. For instance, if a is set to 0.0168, varying
initial conditions induce trajectories which make up to 300 cycles around the fixed point before
being ejected to infinity.

Using the procedure described in [21, 22], a topological analysis of the chaotic attractor
shown in figure 1 is performed. The unimodal map (figure 3) is constituted of two monotonic
branches separated by a critical point. Consequently, the template synthesizing the topological
properties of the attractor has two branches. Since an increasing (decreasing) branch of the
first-return map is order preserving (reversing), the template must have one preserving branch
with an even number of half-turns and one reversing branch with an odd number of half-turns.
When no global torsion is identified, specifically when there are no global half-turns applied
to both branches, a unimodal map as shown in figure 3 is associated with a so-called horseshoe
template [22]. In the case of the attractor solution of system (5), one positive global torsion
(one half-turn as drawn in figure 4) is identified in addition to the half-turn observed in one of
the two branches of the attractor. This second half-turn is observed only in a single branch and
is therefore called a local torsion. In the case of a trivial horseshoe template, the local torsion
is associated with the decreasing branch of the map. In contrast to this, the local torsion here
is conjugated with the global torsion (figure 4) and, thus, the branch with the local torsion
undergoes two half-turns, making it order preserving. The local torsion is therefore associated
with the increasing branch of the first-return map. For that reason, such a template is called a
reverse horseshoe template. It is relevant to note that the local and global torsions are located
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local torsion global torsion

Figure 4. Reverse horseshoe template synthesizing the topological properties of the attractor
generated by system (5). The increasing branch of the first-return map is associated with the
branch with the local torsion.

in the neighbourhood of the double nullcline nully ∩ nullz, exactly where it is made up of focii.
Such features strongly suggest that the double nullcline, identified using the feedback circuit
analysis, is relevant for the topology of the chaotic attractor.

When the transformation{
x �→ µx

t �→ λt
(11)

with the particular value µ = λ2 = a is applied to equation (4), we obtain
...
x +λ3(ẍ − ẋ2 + x) = 0. (12)

When λ → ∞ an asymptotic equation to system (5) may be written in the form

ẍ − ẋ2 + x = 0. (13)

This asymptotic equation has a first integral. Setting y = ẋ, we have

yy ′ − y2 + x = 0 (14)

where y ′ = dy

dx
. Since yy ′ = 1

2
d

dx
y2, the first integral

C =
(
y2 − x − a

2

)
e− 2x

a (15)

is obtained using transformation (11). One has to note that the quantity in parentheses
corresponds to particular solution (10). This first integral is drawn in figure 5 for different
values of the constant C. The parabola associated with the particular solution (C = 0) is
the boundary between the limit cycles which are solutions of the second-order differential
equation (13) and solutions diverging to infinity. This parabola is the solution with which
the attractor collides through a boundary crisis. Note that the fixed point is a centre for the
asymptotic equation (13) while this is an unstable focus (restricted to the xy-plane) for system
(5). The solutions for C = 0 correspond to the points located on the increasing branch of the
first-return map shown in figure 3. These solutions touch the bisecting line, where a period-1
orbit should be located. This explains why the attractor is destroyed when the symbolic
dynamics becomes complete. The other solutions do not correspond to any periodic orbit
embedded within the attractor.

Note that the asymptotic equation is computed (after a rescaling) in the limit a → ∞,
while the chaotic attractor occurs for a restricted range of finite values of a. In fact, we are in
a situation quite similar to the Schrödinger equation in the WKB approximation that strangely
works very well, even when one puts h̄ = 1 in the numerical computation. However, this is
also an asymptotic approximation that can suddenly give rise to a blowing up of the solution
near what is called the turning points. In the case of system (5), the boundary plays this role.
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Figure 5. Phase portrait of the asymptotic equation (13) of system (5) for different values of the
constant C. The boundary (C = 0) is drawn with a dashed line. Parameter value: a = 2.1.

3.2. A second simple chaotic system

By modifying the third-order differential equation (4), Sprott obtained
...
x= −aẍ + ẋx − x (16)

which may be rewritten in the form


ẋ = y

ẏ = z

ż = −x + xy − az.

(17)

This system has a single fixed point F0 which is also a saddle-focus SF−. It is located at the
origin of the phase space. The single full circuit associated with the product J12J23J31 = y −1
is ambiguous. At the fixed point, that is for y = 0, the full circuit is negative (J12J23J31 = −1)

and is characterized by the same eigenvalues as for system (5). There is also a partial circuit
associated with the product J23J32 = x which is ambiguous. The corresponding double
nullcline nully ∩ nullz is defined by y = 1 in the plane z = 0, and the associated eigenvalues

are λ± = −a±
√

a2+4x
2 . This double nullcline is therefore a line made of foci when x < − a2

4

and saddles for x > − a2

4 . As for system (5), the local and global torsions which may be
identified in this attractor are located in the neighbourhood of the double nullcline null y ∩ nullz
(figure 6) where its points are foci. The ambiguity of the full circuit could be sufficient to
allow the existence of chaotic behaviour since it is negative for y < 1, and positive otherwise.
The domain over which the circuit J12J23J31 is negative is clearly responsible for the existence
of oscillations. This is because the circuit is associated with the fixed points around which the
attractor is structured. Thus, the two-element circuit J23J32 is relevant to structure the phase
portrait in the domain in which it is positive (x > 0). The negative contribution of full circuit
J12J23J31 and the positive contribution of the two-element circuit J23J32 induce the possible
existence of chaotic behaviour according to conjecture 3. As for the previous system, the
co-existence of attractors has not been observed.

A chaotic attractor is obtained when setting the control parameter a to 2.017 05
(figure 6). Using the Poincaré section

P2 = {(xn, zn) ∈ R
2 | yn = 0, ẏn > 0} (18)
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Figure 6. Chaotic attractor generated by the simple jerk system just before the boundary crisis with
the particular solution drawn with a dashed line. The topology of this attractor is also characterized
by a reverse horseshoe template but with negative half-turns. This is irrelevant since a permutation
between two coordinates, say y and z, inverses the sign of rotation (a = 2.017 05).
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Figure 7. Bifurcation diagram versus a for the simple jerk dynamics (17).

a bifurcation diagram (figure 7) is computed for a range of a between 2.0168 and 2.13. This
interval is the same as in system (5). After the accumulation point in which a < 2.0577, the
behaviour is chaotic. The corresponding attractor exists up to a boundary crisis occurring at
a = 2.017 05. Similarly to system (5), the attractor collides with the particular solution of
equation (16) reading as x = t . Such particular solution may be rewritten in the form y = 1
(figure 6). In this case, the particular solution is also the double nullcline nully ∩ nullz. It may
easily be checked that the bifurcation diagram of system (17) (figure 7) is equivalent to that
of system (5) (figure 2). In particular, the boundary crisis also occurs when the symbolic
dynamics is complete as evidenced by the first-return map computed for a = 2.017 05
(figure 8). A topological analysis reveals that periodic orbits embedded within the attractor



11238 C Letellier and O Vallée

-6.5 -6 -5.5 -5 -4.5 -4
x

n

-6.5

-6

-5.5

-5

-4.5

-4

x
n+1

Figure 8. First-return map of the simple jerk system just before the boundary crisis (a = 2.017 05).
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Figure 9. Phase portrait of the asymptotic equation (19) of system (17) for different values of the
constant C. The boundary (C = 0) is drawn with a dashed line. Parameter value: 2.1.

are organized according to the template associated with the attractor of system (5). Thus,
this is a horseshoe template as suggested by the first-return map which looks like a parabola.
A global torsion is also observed in the attractor (left upper part of the attractor shown in
figure 8). The attractors of systems (5) and (17) are therefore topologically equivalent. For
both systems, the nullcline nully ∩ nullz is responsible for the global and local torsion. The
attractors therefore result from the full circuit responsible for the existence of the fixed point
and the two-element circuit inducing the torsion.

Similarly to system (5), the asymptotic equation

ẍ − xẋ + x = 0 (19)

may be obtained using transformation (11) but with the values (a = µ2 = λ2). Such an
asymptotic equation has the first integral

C = (y − 1) exp

(
y − x2

2a

)
. (20)
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This integral is shown for different values of the constant C (figure 9). Again, the particular
solution (C = 0) is the boundary between the limit cycle (C < 0) and the solutions diverging
to infinity (C > 0). As for the previous system, the solution with C = 0 corresponds to
the period-1 orbit located at the intersection of the increasing branch of the first-return map
(figure 8) and the bisecting line.

Additional analytical computations may be done. Using the transformation x �→ t +x0 +u

where x0 is a constant and u is a perturbed solution searched near the particular solution x = t ,
the third-order differential equation (16) becomes

...
u + aü − (t + x0)u̇ − uu̇ = 0. (21)

In order to obtain a perturbed solution, the term uu̇ has to be neglected. Setting w = u̇, the
linear second-order differential equation

ẅ + aẇ − (t + x0)w = 0 (22)

is obtained. Assuming that w = W e−at/2, we obtain

Ẅ −
(

t + x0 +
a2

4

)
W = 0. (23)

Analytical solutions to this equation depend on Airy functions. They are

w = u̇ = exp(−at/2) [αAi(τ) + βBi(τ )] (24)

where we put τ = t + x0 + a2/4, and where α and β are integration constants. Thus, x is given
by

x = t + x0 +
∫ t

0
w(t ′) dt ′. (25)

To have a perturbed solution w(t), initial conditions cancelling the integration constant β

must be chosen since the function Bi tends towards infinity when t → ∞. Choosing initial
conditions, x = x0, ẋ = y0 �= 1 and ẍ = 0, we find

β = π(y0 − 1)
(a

2
Ai(x0 + a2/4) − Ai ′(x0 + a2/4)

)
= 0. (26)

The initial condition y0 = 1 has not been retained because it induces the trivial solution. There
exists a countable infinite set of values x0 for a given a, leading to β = 0, which are related to
the zeros of the Airy function. For any values of a corresponding to the chaotic regime, the
perturbed solution may be found as close as possible to the particular solution x = t which
belongs to the attractor!

3.3. The simplest equivariant jerk system

Symmetries have always played an important role in physics, from fundamental formulations
of basic principles to concrete applications. Symmetries are also present in a variety of chaotic
systems. Among them is the well-known Lorenz system [3] which has a rotation symmetry.
The simplest jerk system with symmetry properties was proposed by Malasoma [11] and
reads as 


ẋ = y

ẏ = z

ż = −az + xy2 − x.

(27)
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Figure 10. Chaotic attractor generated by the simplest equivariant jerk system just before the
boundary crisis (α = 2.027 717). The particular solutions y = ±1 are drawn with dashed lines.
They correspond to the double nullclines nully ∩ nullz.

This system is equivariant in that it obeys the relation γ · f(x)= f (γ · x) where γ is a 3 × 3
matrix defining the symmetry properties. In the present case, the γ -matrix

γ =

−1 0 0

0 −1 0
0 0 −1


 (28)

defines an inversion symmetry P . It means that the vector field f is invariant when (x, y, z)

are mapped into (−x,−y,−z). System (5) has a single fixed point F0 located at the origin of
the phase space. This is a saddle-focus SF−.

The single full circuit is associated with J12J23J31 = y2 − 1 and is ambiguous. The fixed
point F0 is located in the domain of phase space where the full circuit is negative (|y| < 1).
This is in agreement with the fact that it is a saddle-focus characterized by a negative real
eigenvalue. The full circuit is therefore functional in the domain |y| < 1 where it is negative.
It is thus responsible for the existence of oscillations as suggested by conjecture 1. There is
also a two-element circuit associated with J23J32 = 2xy. The corresponding double nullcline
nully∩ nullz is defined by y = ±1. The associated eigenvalues are

λ = −a ±
√

a2 + 8xy

2
. (29)

The double nullclines y = ±1 are made of stable foci when x < − a2

8 (resp. x > a2

8 ) and
saddles otherwise. The symmetry properties are therefore recovered in the structure of the
double nullclines. Again, the local and global torsion are located in the neighbourhood of
the segments of the double nullclines made of points with complex eigenvalues. As for
system (27), the two-element circuit J23J32 is positive for xy > 0. It contributes to the
co-existence of two attractors observed with a > 2.0644 as detailed below. The co-existence
of the negative full circuit and the positive two-element circuit satisfies the conditions for
conjecture 3 for chaotic attractors. Note that the product xy matches the symmetry properties
of the attractor.
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Figure 11. Bifurcation diagram versus a of the simplest equivariant jerk dynamics (27). The
bifurcation diagram for its image is also shown.

When a = 2.027 717 and the initial conditions are (x0, y0, z0) = (4.0, 0.0, 0.0), the
chaotic attractor shown in figure 10 is obtained. The attractor exhibits a symmetry around the
Oz-axis under the action of γ . This attractor is investigated using the Poincaré section

PO = {(xn, zn) ∈ R
2 | yn = 0, ẏn < 0}. (30)

A bifurcation diagram (figure 11) is computed versus a within the interval [2.027 717; 2.2].
When a is decreased, two simultaneous period-doubling cascades are observed. The two
cascades are symmetric under the action of γ . Only one of these cascades is shown in
figure 11(a). After the accumulation point for a = 2.0840, the behaviour becomes chaotic.
Depending on the initial conditions, two attractors which are symmetric under the action of γ

are observed. Such a feature persists up to an attractor merging crisis. This crisis corresponds
to the sudden increase in size of the chaotic attractor and results from two attractors which
collide to form a single symmetric attractor [23]. In fact, the crisis occurs when each attractor
is characterized by a unimodal map for which the symbolic dynamics is complete. For
a ∈ ]2.0644; 2.2], the bifurcation diagram can be predicted from the unimodal order [20].
The attractor merging crisis occurs for a ≈ 2.0644. For values smaller than a, a single
attractor which is globally invariant under the action of γ is observed (as well exemplified in
figure 10).

When a < 2.0644, the single symmetric chaotic attractor is characterized by a multimodal
map which may have up to three critical points. Such a map can be observed for a value of
a = 2.027 717 [24]. In that case, the bifurcation diagram can no longer be predicted by
kneading theory. When more than one critical point is involved through a variation of a
control parameter, there is no longer universal order for the creation/destruction of periodic
orbits.

Nevertheless, when an equivariant system is considered, it may be possible to simplify the
analysis by modding out the symmetry properties. Such a procedure was initially introduced
by mapping the dynamics in a fundamental domain of the phase space [18]. Recently it was
developed by using the image of equivariant systems [25], which results from the 2 → 1
mapping of the equivariant system to obtain a projection of the dynamics without any residual
symmetry. The dynamical system (5) which is invariant under the inversion symmetry is
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Figure 12. Image of the simplest equivariant jerk system just before the boundary crisis. A reverse
horseshoe template describes the topological properties of this attractor (a = 2.027 717).

thus mapped into a locally equivalent dynamical system. This is done by constructing a
nonlinear coordinate transformation (x, y, z) → (u, v,w) in which the coordinates (u, v,w)

are invariant under the inversion symmetry P . The elementary polynomials in (x, y, z) of
degree up to two, and invariant underP , are xy, yz, zx, x2, y2 and z2. The following coordinate
transformation is convenient [24] :

ϕ =
∣∣∣∣∣∣
u = x2 − y2

v = 2xy

w = z2.

(31)

The invariant dynamical system equation u̇i = gi(u) where u = (u1 = u, u2 = v, u3 = w)

are determined in a straightforward way

u̇i = ∂ui

∂xj

dxj

dt
= ∂ui

∂xj

Fj (x) = gi(u). (32)

Using 2x2 = ρ + u and 2y2 = ρ − u where ρ =
√

u2 + v2, the invariant equations of system
(27) are 


u̇ = v ± √

(ρ − u)w

v̇ = ρ − u ± √
(ρ − u)w

ẇ = −2aw ± [
ρ−u

2 − 1
]√

(ρ + u)w.

(33)

The image attractor (figure 12) can also be obtained by applying the map ϕ onto the original
attractor. No residual symmetry can be identified in the resulting system.

The image attractor is investigated using the Poincaré section

PI = {(un,wn) ∈ R
2 | vn = 0, v̇n < 0}. (34)

Since the Poincaré section is unidimensional, a first-return map may be built with a single
variable to define the partition of the attractor. For a = 2.027 717 (figure 13), the map is
unimodal and its increasing branch touches the bisecting line. The symbolic dynamics is
thus complete. A mapping of a four branch first-return map into a unimodal map has already
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Figure 13. First-return map of the image system of the simplest equivariant jerk system just before
the boundary crisis (a = 2.027 717). A similar map may be obtained using the w-variable.

been observed in the Burke and Shaw system when the symmetry is modded out [18]. This
was investigated for the simplest jerk equivariant system in [24]. This image attractor is
characterized by the reverse horseshoe template (figure 4) exhibited for the previous two
systems. The image attractor is therefore topologically equivalent to the attractor solution of
systems (5) and (17). The bifurcation diagram (figure 11(b)) of the image system is typical of
a unimodal map with a differentiable maximum. As detailed for the Burke and Shaw system
[18], a period-1 orbit in the original system becomes a period-2 orbit in the image system as
easily observed for a = 2.11 in figure 11.

The attractor in the original phase space R
3(x, y, z) disappears through a boundary crisis

for a-values slightly smaller. Such a feature occurs when the attractor collides with the two
double nullclines (figure 10). This is a scenario similar to that encountered for the two previous
systems. The particular solutions y = ±1 are mapped under the 2 → 1 map ϕ, into a single
solution defined by u = v2

4 −1 shown in figure 12. In the image space R
3(u, v,w), we recover

exactly the shape of the attractor (figure 1) generated by system (5) with its particular solution.
From this point of view, all three systems belong to a class of equivalence since a nonlinear
coordinate transformation allows us to switch from one representation to another. Note that
from a feedback circuit analysis, these three systems have a similar structure, modulo the
symmetry properties.

An asymptotic equation may be obtained as for the previous cases. A first integral

C = (y2 − 1) exp

(
−x2

a

)
(35)

is thus obtained (figure 14). Again, the separatrices correspond to the particular solutions of
system (27). A perturbed solution can also be searched around particular solutions using

x(t) = ±t + x0 + u. (36)

In order to obtain this perturbed solution, the equation
...
u + aü − 2(t ± x0)u̇ = 0 (37)

must be solved. We have to distinguish the two cases ±x0. Again, putting w = u̇, we readily
obtain an equation that can be mapped with a scaling to equation (23). So the solutions
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Figure 14. Phase portrait of the asymptotic equation of system (27) for different values of the
constant C. The boundary (C = 0) is drawn with dashed lines. Parameter value: a = 2.1.

may be expressed in terms of Airy functions leading to similar conclusions, that is to say
particular solutions with C = 0 belong to the attractor when the first-return map has a branch
which touches the bisecting line. This intersection point induces the boundary crisis and,
consequently, the ejection of the trajectory to infinity.

4. Conclusion

Three simple systems generating chaotic behaviour have been investigated. Particular solutions
have been found for each of them. In all cases, these particular solutions are responsible for
the destruction of the chaotic attractor through a boundary crisis in which the attractors collide
with particular solutions. By using a feedback analysis, it has been shown that all attractors
are structured around a single fixed point located at the origin of the phase space. The
first two attractors without any symmetry properties are also structured around one double
nullcline made of foci in the neighbourhood of the global torsion and the local torsion.
These torsions may be identified. In the case of the simplest equivariant system, there are
two double nullclines, one being a symmetry of the other. When the symmetry properties are
modded out using a 2 → 1 mapping, the image attractor obtained is topologically equivalent
to the attractor of the first two systems investigated. Through this, we may conjecture that the
three systems belong to a single class of systems. From the feedback circuit structures, this
is quite obvious since all of them have a full circuit and a two-element circuit associated with
double nullclines structuring the attractor. Moreover, the attractors of the two systems without
any symmetry properties and the image attractor of the equivariant system are topologically
equivalent, thus providing a first link between the feedback circuit structure of the equations
and the topological properties of their attractors.
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[5] Rössler O E 1979 Continous chaos—four prototype equations Ann. NY Acad. Sci. 316 376–92
[6] Sprott J C 1994 Some simple chaotic flows Phys. Rev. E 50 647–50
[7] Gottlieb H P W 1996 What is the simplest jerk function that gives chaos? Am. J. Phys. 64 525
[8] Gouesbet G and Letellier C 1994 Global vector field reconstruction by using a multivariate polynomial

L2-approximation on nets Phys. Rev. E 49 4955–72
[9] Linz S J 1997 Nonlinear dynamical models and jerky motion Am. J. Phys. 65 523–43

[10] Fu Z and Heidel J 1997 Non chaotic behaviour in three-dimensional quadratic systems Nonlinearity 10 1289–303
[11] Malasoma J-M 2000 What is the simplest dissipative chaotic jerk equation which is parity invariant ? Phys.

Lett. A 264 383–9
[12] Thomas R 1984 Logical description, analysis and synthesis of biological and other networks comprising

feedback loops Adv. Chem. Phys. 55 247–82
[13] Thomas R 1981 On the relation between the logical structure of systems and their ability to generate multiple

steady states or sustained oscillations Springer Ser. Synerg. 9 180–93
[14] Thomas R and Kaufman M 2001 Multistationarity, the basis of cell differentiation and memory: I. Structural

conditions of multistationarity and other nontrivial behaviour Chaos 11 170–9
[15] Thomas R 1999 Deterministic chaos seen in terms of feedback circuits: analysis, synthesis, ‘labyrinth chaos’

Int. J. Bifurcations Chaos 9 1889–905
[16] Letellier C, Thomas R and Kaufman M 2003 Classification of dynamical systems using feedback circuit,

submitted
[17] Snoussi El H and Thomas R 1993 Logical identification of all steady states: the concept of feedback loop

characteristic states Bull. Math. Biol. 55 973–91
[18] Letellier C, Dutertre P, Reizner J and Gouesbet G 1996 Evolution of multimodal map induced by an equivariant

vector field J. Phys. A: Math. Gen. 29 5359–73
[19] Sprott J C and Linz S J 2000 Algebraically simple chaotic flows Int. J. Chaos Theory Appl. 5 3–22
[20] Collet P and Eckmann J P 1980 Iterated maps on the interval as dynamical systems Progress in Physics ed

A Jaffe and D Ruelle (Boston, MA: Birkhäuser)
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a systematic topological characterization Chaos 5 271–82
[22] Gilmore R 1998 Topological analysis of chaotic dynamical systems Rev. Mod. Phys. 70 1455–529
[23] Ott E 1993 Chaos in Dynamical System (Cambridge: Cambridge University Press)
[24] Letellier C and Malasoma J-M 2001 Unimodal order in the image of the simplest equivariant jerk system Phys.

Rev. E 64 067202
[25] Letellier C and Gilmore R 2001 Covering dynamical systems: two-fold covers Phys. Rev. E 63 16206


